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Abstract| Traditionally, RC system designers were re-
quired to transform applications written using 
oating point
arithmetic into functionally equivalent applications that use
integer arithmetic. This was due to the limited logic capac-
ity of FPGA devices. Recent advances in the logic capacity
(> 2 million gates) and the maximum clock rate (> 100MHz)
for FPGA devices has enabled the use of 
oating point mod-
ules in recon�gurable computing systems.
This paper presents a library of pipelined 
oating point

functional units, called functional cores, that can be used
in isolation or with a standard recon�gurable instruction
set computer. A standard interface allows the simple in-
terconnection of these cores to form more complex func-
tional units. The use of standard single precision 
oat-
ing point units in recon�gurable computing system design
also facilitates hardware debugging when implementing al-
gorithms that were previously written in software using

oating point arithmetic and removes the need for exten-
sive precision analysis. The functional cores presented in-
clude: an adder, subtractor, multiplier, divider, accumu-
lator, multiply-accumulate unit, complex arithmetic mul-
tiplier, a complex arithmetic accumulator, a core speci�-
cally design for LU decomposition, and a core used to com-
pute the Discrete Fourier Transform. The paper concludes
with area and performance data for these functional cores
mapped onto a typical commercial FPGA device.

I. Introduction

Recon�gurable computing (RC) has emerged as a
viable computing option for applications that require
high performance. RC systems are a combination of
hardware/software data processing platforms that imple-
ment computationally intensive algorithms in Field Pro-
grammable Gate Array (FPGA) hardware devices. Typ-
ical RC systems yield 10X to 100X improvement in pro-
cessing speed over conventional CPU-based "software-
only" systems. Recon�gurable computing systems are
also "in-circuit" re-programmable, allowing data collection
or processing con�gurations to be changed in microsec-
onds. These RC systems combine the 
exibility of general-
purpose processors with the speed of application speci�c
processors. By mapping an application to an RC system,
the system designer can personalize the hardware for each
particular application, thereby increasing system perfor-
mance without sacri�cing system 
exibility.
In the past, system designers have generally had two op-

tions for implementing their system: 1) design a system
that is 
exible by writing software that executes on a gen-
eral purpose processor (desktop computer) or 2) design an
application speci�c integrated circuit (ASIC) for a partic-
ular algorithm [1]. The �rst option yields systems that
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are capable of performing many common functions in an
acceptable amount of time. Because the design of the gen-
eral purpose processor is not centered around a single func-
tion, or small group of functions, it can be programmed to
perform a large variety of tasks. Unfortunately, this 
exi-
bility may result in poor performance for specialized tasks.
The second option often results in the greatest system per-
formance gains, but this comes at the expense of system
development time and chip fabrication costs that are sig-
ni�cantly higher than the cost of a desktop computer.

This problem has led system designers to attempt to
�nd methods for improving the processing time of appli-
cations executed on general purpose machines while min-
imizing the associated development costs. Early attempts
to improve computer system performance were made in the
mid 1970's and centered around adding many complex in-
structions to the computer's instruction set. The use of
these complex instructions reduced the number of instruc-
tion fetches and decodes required for typical programs, thus
reducing the number of main memory accesses [2]. This led
to the introduction of the Complex Instruction-Set Com-
puter (CISC). Since it is very diÆcult for compilers to rec-
ognize these complex instructions in traditional high-level
language programs, only a small subset of the available in-
structions were actually used in typical programs [3]. As
a result, in the 1980's, computer architects focused on re-
ducing the number of instructions available [4]. This led to
the introduction of the Reduced Instruction Set Computer
(RISC). This reduction in the number of available instruc-
tions allows for a faster clock rate, that typically leads to
a reduction in execution time.

The implementation of coprocessors, or more generally,
special purpose processors, is an attractive alternative to
the desktop computer and the ASIC for system design. Co-
processors and special purpose systems are developed to
perform a small number of functions very eÆciently [4].
Because they are designed in this manner, they are gener-
ally very fast at a certain type of application, but incapable
of performing a wide variety of applications.

This paper utilizes a recon�gurable coprocessor that is
speci�cally tailored for each application. It presents a solu-
tion that merges the advantages of typical general purpose
processors and ASICs. Similar to a general purpose pro-
cessor, the recon�gurable processor can be con�gured to
execute a wide variety of tasks. Similar to an ASIC, the
recon�gurable processor is designed speci�cally for each ap-
plication resulting in increased performance.

The paper also presents a library of pipelined 
oating



point functional units, called functional cores, that can be
used in isolation or in the recon�gurable processor. Not
only does the use of these units facilitate system devel-
opment and debugging, but also these units utilize a small
percentage of the available FPGA logic capacity resources.

II. A Reconfigurable Processor

The concept of developing a recon�gurable processor is
not new, in fact, several recon�gurable processors have ap-
peared in the literature over the past 10-15 years [5], [6].
These approaches utilize the FPGA fabric to implement a
processor with a small instruction set. Since these proces-
sors run at clock speeds that are much less than typical mi-
croprocessors, running all applications on such a processor
would result in signi�cantly slower execution times. How-
ever, since the FPGA can be loaded with a new processor,
the best recon�gurable processor for the target application
can be used resulting in execution times that can be signif-
icantly faster than typical general purpose processors.
In this paper, a standard data unit and a standard con-

trol unit are used as the infrastructure to design a large
library of recon�gurable processors. In contrast to the
approach of developing a detailed FPGA-based design for
each application, our approach is to combine pre-designed
units with functional cores to create many unique recon�g-
urable processors. Ultimately the synthesis of future recon-
�gurable processors can be fully automated by developing
a program that uses a hardware description language, i.e.
VHDL, to stitch together all required processor compo-
nents.
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Fig. 1. A recon�gurable processor with 5 local memories.

Fig. 1 presents a typical recon�gurable processor archi-
tecture with �ve local memories. With a large number of
memories, the processor can be designed to fetch multiple
input operands from di�erent memories while simultane-
ously writing a result to another memory. For example,
given �ve memories, up to four inputs can be loaded at a
time while writing an output to the �fth memory. This
could provide a 4X speedup over systems that contain only
a single memory, i.e. general purpose processors.
Fig. 2 shows a single recon�gurable processor, also called
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Fig. 2. Processing element architecture.

a processing element (PE). Each PE is interfaced with sev-
eral memories: the host memory and the FPGA's local
memory. A host memory interface manages the transfer of
data between the host memory and the FPGA's local mem-
ory. For applications that require large amounts of data to
be transferred from the host memory to the FPGA's local
memory, this could present a signi�cant performance bot-
tleneck. However, future RC systems that allow the FPGA
and the host to share a memory can alleviate the need to
transfer data between the host and FPGA memory along
with the removal of the performance bottleneck.
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Fig. 3. Processing element core control and data units.

Each PECore, shown in Fig. 3, contains a control unit
and a data unit. The control unit is a �nite state ma-
chine that manages memory read/write transactions, ini-
tiates the instruction fetch-decode-execution cycle of the
processor, and determines when instruction processing is
complete. Once processing is complete, the control unit sig-
nals the host to turn control back over to the host/memory
interface. The data unit contains a register �le, a program
counter, an instruction register, several memory address
registers, counters for determining when vector instructions
are complete, and one or more functional cores that are ap-
plication speci�c. All registers and counters are 32-bits in
length. The current implementation of the recon�gurable
processor contains 8 registers, 5 memory address registers,
and a maximum of 7 functional cores.

Our recon�gurable processor allows the reuse of particu-
lar op-codes for di�erent instructions that are loaded into
the FPGA. Details of the assembly language and instruc-
tion set opcodes are found in [7], [8]. This combination
recon�gurable processor and recon�gurable instruction set
provides the bene�ts of both RISC and CISC processors.
It o�ers the performance of a RISC processor because the
maximum number of instructions is limited, i.e. 32 in-
structions. This �xes the decode logic, the critical path,
and ultimately the maximum clock period of the processor.



It provides the bene�ts of a CISC processor since we can
potentially load an in�nite number of processors into the
FPGA, each containing a unique instruction set composed
of a limited number of instructions, i.e. 32 instructions. An
assembler reads assembly language programs(called session
�les) written using our instruction set and executes them
directly on a recon�gurable computer.
Each new instruction set is obtained by inserting a new

functional core into a standard data unit and connecting it
to a standard control unit. While the number of unique
control units and data units contained in the library is
small, there are theoretically an in�nite number of func-
tional cores. Hence, given an FPGA with in�nite logic
capacity, one can build a library that consists of an in�-
nite number of recon�gurable processors, each containing
a limited number of instructions, i.e. 32.
A novel feature of the proposed recon�gurable proces-

sor is that a large percentage of the architecture is �xed
for a given commercial recon�gurable computing system.
While the host memory interface is unique for each RC
system, it only needs to be designed once for each board
and can be reused for each new recon�gurable processor
that is developed. This is also true for the standard con-
trol unit and data unit. Only slight modi�cations need
to be made to these modules that we have modeled us-
ing the VHDL hardware description language to produce
a new recon�gurable processor that can be tailored for a
single or a small set of applications. In most cases, only
the application-speci�c functional cores need to be devel-
oped by the designer for each new application. We utilize a
VHDL module generation program (FunCoreGen), devel-
oped at Howard University, to produce a VHDL description
of complex functional cores given a simple netlist descrip-
tion of the complex core.

III. Floating Point Functional Cores
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Fig. 4. Function core de�nition (Type I).

A functional core is a 
oating point unit that contains
n inputs and a single output. An 8-input functional core
is shown in Fig. 4. This core must be incorporated into
a recon�gurable processor with a register �le containing a
minimum of 8 registers, since the outputs of each register
are connected to the inputs of the function core.
There are currently two types of functional cores sup-

ported by the standard control unit: cores WITHOUT

an accumulator (Type I) and cores WITH an accumulator
(Type II). All function cores (Types I and II) have simple
control, including an ENABLE pin, used as a signal that
valid data is available on the core inputs, and a DONE

pin, used to signal that the core output data is valid. In
the case of multiple functional cores contained in a single
data unit, all register outputs are shared by each function
core.
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Fig. 5. Example function cores (Type I).

Fig. 5 presents two sample function core, both of Type
I. Fig. 5a is a simple two input functional core that con-
sists of a single pipelined 
oating point adder. Complex
functional cores are built by combining simple cores avail-
able in our library as shown in Fig. 5b. When creating
complex functional cores, the DONE signals of the initial
levels of the tree are connected to the ENABLE signals
of the subsequent level of the balanced tree. Hence the
functional core of Fig. 5b can be used to compute Y =
(R0�R1) + (R2�R3). In order for the complex core to
be used with the standard control unit, it must contain a
single ENABLE input pin and a single DONE output pin.
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Fig. 6. A sample functional core that includes a conditional.

Type I cores can also include conditionals as shown in
Fig. 6. This same core computes the expression Y =
R2 � R3 if R0 > R1. The else conditions can be incor-
porated using multiplexors whose output are selected by
the output of the 
oating point comparison units. Once



the designer has built a greater than, less than, and equal
units to unit, along with multiplexors, a large number of
conditional units can be developed.

R0R0 R1R1 R7R7

DONE

ENABLE

FunCore
EMPTY

READYTOEMPTY

Fig. 7. Functional core de�nition with an accumulator (Type II).

Type II cores, shown in Fig. 7, with an accumulator at
the output of the core have two additional pins: READY-
TOEMPTY and empty. The READYTOEMPTY pin sig-
nals that the accumulator in the unit can be emptied at this
time. To empty the accumulator, the empty input pin is as-
serted. Since the accumulator contains a pipelined 
oating
point adder, it takes many clock cycles to �nish summing
up the partial sums producing a single result. Once the
emptying process is complete, the DONE signal is asserted
signaling that the core contains valid data on it's output.
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Fig. 8. Example function cores with an accumulator (Type II).

Sample Type II cores are shown in Fig. 8. All of these
units must contain an accumulator at the output. The
�rst unit is a simple accumulator module that was built
using a special 
oating point adder that holds the data
in the pipeline until it receives valid data on it's input or
until it is emptied. It contains, a special input selector
that recirculates the adder output back into one of it's in-
puts along with eight registers used to store partial sums
that need to be added together. A simple �nite state ma-
chine manages accumulator operation. To operate a Type
II core, the ENABLE signal is asserted each time valid
data is available on it's input. The empty signal is then as-
serted after all input data has been read into the unit and a
READYTOEMPTY=1 has been observed. Fig. 8b shows
a multiply-accumulate module that was built by connecting

a 
oating point multiplier to the 
oating point accumula-
tor module. While the core in Fig. 8a is always ready to
be emptied, the core in Fig. 8b is only ready to be emptied
when data exits the multiplier.

All 
oating point cores developed at Howard University
have a latency of either 8 or 16 cycles. The latency was
standardized to facilitate the insertion of delays when con-
necting these units together to form more complex bal-
anced trees. Since the latency is a multiple of 8, only two
delay unit types needed to be included in the library (De-
lay8 and Delay16). Using non-standard latencies would
introduce additional complexity in delay insertion to en-
sure that the resulting trees of interconnected 
oating point
units are balanced.
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Fig. 9. Two functional cores used for LU decomposition.

Fig. 9 shows the complex cores used to build a recon�g-
urable processor that implements LU Decomposition. The
LU decomposition algorithm can be used to solve a system
of simultaneous linear equations without performing ma-
trix inversion. The problem of LU decomposition can be
stated as follows: given a matrix A, �nd two matrices L
and U such that LU = A, where L is a lower triangular
matrix, and A is an upper triangular matrix. Details of
the LU decomposition algorithm can be found in [7].

For LU decomposition we use a recon�gurable proces-
sor with two functional cores. One functional core is used
to perform all of the vector division operations while the
other performs multiplication and subtraction. Since the
multiplier has a latency of 8, as is the case for all simple
Type I cores except the divider (latency = 16), an eight
stage delay unit must be used. With these two cores, we
achieved a speedup up 7X over running the same algorithm
on a general purpose processor [7].

The most complex core that we currently have in our
library is used to compute the 1024-point Discrete Fourier
Transform (DFT) . It can accommodate both real and
imaginary input data and can compute both the DFT and
it's inverse. This core contains a theta unit to compute the
value of the angle for the DFT, a sine/cosine unit look-up-
table, a complex multiplier, and a complex accumulator.
Since we needed to develop the complex multiplier and ac-
cumulator for the DFT, we also included these units in
the 
oating point library. Models for all functional cores
written using the VHDL language can be found in [9].



IV. Floating Point Area/Performance Statistics

In our experiments, we synthesized all 
oating point
function cores targeting an FPGA board, available at
Howard University, containing an XCV2000E FPGA with
approximately 2 million system gate equivalents. This
board contains four, 8MB local FPGA memories and one,
4-MB local FPGA memory. The FPGA board has a max-
imum clock frequency of 100 MHz.

The entire library was modeled in VHDL and simulated
extensively. The resulting models were mapped onto the
FPGA using commercial logic synthesis and FPGA place-
ment and routing tools. The goal of this experiment was to
investigate the feasibility of using 
oating point units for
various applications in an RC system.

TABLE I

Functional core area/performance

Core # of LUTs/ Clock
Name (Utilization) Frequency

(MHz)

Adder/Subtractor 526 (1%) 63.9

Accumulator 806 (2%) 46.4

Complex 1025 (2%) 67.0
Multiplier

Multiplier 1245 (3%) 64.7

Complex 1610 (4%) 43.9
Accumulator

Multiply- 2158 (5%) 46.4
Accumulate

Divider 2072 (5%) 56.3

LUCore 3868 (10%) 56.3

DFTCore 6094 (15%) 39.1

Table I presents the results obtained in our experiment.
The table reports the name of the 
oating point functional
core, the number of lookup tables (LUTs) required for the
core, the FPGA utilization as a percentage, and the maxi-
mum clock frequency that the core can accommodate. Re-
sults demonstrate that approximately 100 
oating point
adders could be placed on a single XCV2000E part. This
is an interesting result as in the past only 5-10 adders could
�t on a typical FPGA. Since the 
oating point multiplier
requires about 3% of the part, a total of approximately 30
multipliers can be placed on a single FPGA. Hence func-
tional cores composed of many adders and multipliers are
feasible. Even the most complicated functional core used
for calculating the DFT can be replicated approximately 6
times on the XCV2000E FPGA. The maximum clock rates

for all functional cores ranges from 39.1 MHz for the DFT
core to 67.0 MHz for the complex multiplier.
This paper has presented a recon�gurable processor ar-

chitecture with a very 
exible datapath containing unique
functional cores that are tailored for each application. A
novel instruction set that allows op-code re-use has been
successfully tested. Results demonstrate that, 
oating
point units can be used on current FPGAs in spite of the
design complexity as compared to integer units. The ben-
e�ts of using 
oating point units are:
1. Applications requiring a large dynamic range can be
developed fairly simply.

2. Hardware debugging is simpli�ed when given an ini-
tial application that uses 
oating point numbers since
there is a one-to-one correspondence between data out-
puts of the hardware and software.

3. Using 
oating point functional cores in a recon�g-
urable processor on an FPGA can result in signi�cant
performance gains over software executing on a typical
general purpose processor.
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